PortEco logo

PMID:20036249

From EcoliWiki
Jump to: navigation, search

Contents

Citation

Nakamura, A, Takumi, K and Miki, K (2010) Crystal structure of a thermophilic GrpE protein: insight into thermosensing function for the DnaK chaperone system. J. Mol. Biol. 396:1000-11

Abstract

A homodimeric GrpE protein functions as a nucleotide exchange factor of the eubacterium DnaK molecular chaperone system. The co-chaperone GrpE accelerates ADP dissociation from, and promotes ATP binding to, DnaK, which cooperatively facilitates the DnaK chaperone cycle with another co-chaperone, DnaJ. GrpE characteristically undergoes two-step conformational changes in response to elevation of the environmental temperature. In the first transition at heat-shock temperatures, a fully reversible and functionally deficient structural alteration takes place in GrpE, and then the higher temperatures lead to the irreversible dissociation of the GrpE dimer into monomers as the second transition. GrpE is also thought to be a thermosensor of the DnaK system, since it is the only member of the DnaK system that changes its structure reversibly and loses its function at heat-shock temperatures of various organisms. We here report the crystal structure of GrpE from Thermus thermophilus HB8 (GrpE(Tth)) at 3.23 A resolution. The resolved structure is compared with that of GrpE from mesophilic Escherichia coli (GrpE(Eco)), revealing structural similarities, particularly in the DnaK interaction regions, and structural characteristics for the thermal stability of GrpE(Tth). In addition, the structure analysis raised the possibility that the polypeptide chain in the reported GrpE(Eco) structure was misinterpreted. Comparison of these two GrpE structures combined with the results of limited proteolysis experiments provides insight into the protein dynamics of GrpE(Tth) correlated with the shift of temperature, and also suggests that the localized and partial unfolding at the plausible DnaK interaction sites of GrpE(Tth) causes functional deficiency of nucleotide exchange factor in response to the heat shock.

Links

PubMed Online version:10.1016/j.jmb.2009.12.028

Keywords

Amino Acid Sequence; Bacterial Proteins/chemistry; Bacterial Proteins/genetics; Bacterial Proteins/metabolism; Crystallography, X-Ray; Heat-Shock Proteins/chemistry; Heat-Shock Proteins/genetics; Heat-Shock Proteins/metabolism; Models, Molecular; Molecular Chaperones/chemistry; Molecular Chaperones/genetics; Molecular Chaperones/metabolism; Molecular Sequence Data; Protein Structure, Tertiary; Recombinant Proteins/chemistry; Recombinant Proteins/genetics; Recombinant Proteins/metabolism; Sequence Homology, Amino Acid; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Static Electricity; Temperature; Thermus thermophilus/chemistry; Thermus thermophilus/genetics; Thermus thermophilus/metabolism

Significance

You can help EcoliWiki by summarizing why this paper is useful

Useful Materials and Methods

You can help Ecoliwiki by describing the useful materials (strains, plasmids, antibodies, etc) described in this paper.

Annotations

Gene product Qualifier GO ID GO term name Evidence Code with/from Aspect Notes Status

EcoliWiki Links

Add links to pages that link here (e.g. gene, product, method pages)

See also

References

See Help:References for how to manage references in EcoliWiki.